
Chapter 1

Coupled Nonlinear Shrödinger-KdV

Equations

1.1 Introduction

In this chapter we will study the coupled nonlinear Shrödinger-KdV equa-

tions (CSKdV) and the exact solution of them. So we will see that this equations

has conserved quantities. We will present the solution of the block tridiagonal

system, penta-diagonal system and block penta-diagonal system. Fixed point

method for solving the nonlinear system will be given.

Exact solutions for coupled nonlinear systems are discussed by many au-

thers [1],[10],[21],[22],[28]. Also the numerical solution for coupled nonlinear

Shrödinger-KdV are studied by many authers and very rich research subject [2]-

[5],[11],[12]-[19],[23],[24]. Finite element solution of the CSKdV are discussed by

[6],[7].
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1.2 Coupled Nonlinear Shrödinger-KdV Equa-

tions

Nonlinear phenomena play a crucial role in a variety of scienti�c �elds, espe-

cially in �uid mechanics, solid state physics, plasma physics, plasma waves and

chemical physics. The coupled nonlinear Shrödinger-KdV equations [6],[7]

i�ut +
3
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uxx �
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uv = 0 , (1.1)

vt +
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vxxx +
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�
juj2 + v2

�
x
= 0 , (1.2)

xL < x < xR; t > 0

with the initial conditions

u (x; 0) = u0 (x) , v (x; 0) = v0 (x)

and boundary conditions

u (xl; t) = u (xr; t) = 0 , v (xl; t) = v (xr; t) = 0 (1.3)

have been used extensively to model nonlinear dynamics of one-dimensional Lang-

muir and ion-acoustic waves in a system of coordinates moving at the ion-acoustic

speed. Here u (x; t) is a complex function describing electric �eld of Langmuir

oscillations and v (x; t) is real function describing low-frequency density pertur-

bation. � > 0 is a constant [7]. The exact solution of coupled Shrödinger-KdV

equations (1.1) and (1.2) is
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, (1.4)

v (x; t) = �9
5
�

1

cosh2 �
(1.5)

where � =
p

�
10
(x+ �t), and � is a free positive parameter [6],[7].
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To avoid complex computation, we assume [12]-[19]

u (x; t) = u1 (x; t) + iu2 (x; t) ; i
2 = �1 , (1.6)

v (x; t) = u3 (x; t) (1.7)

where u1 (x; t) ; u2 (x; t) and u3 (x; t) are real functions.

By making use of (1.6) and (1.7), the CSKdV equations will be reduced to

the coupled system

� (u1)t +
3

2
(u2)xx �

1

2
u2u3 = 0 , (1.8)

� (u2)t �
3

2
(u1)xx +

1

2
u1u3 = 0 , (1.9)

(u3)t+
1

2
(u3)xxx+

1

2

�
u21 + u22 + u23

�
x
= 0 . (1.10)

System (1.8) - (1.10) is nonlinear [10].

1.3 Conservation Laws

Theorem:

The coupled nonlinear Shrödinger-KdV equations (1.1) and (1.2) has

the conserved quantities[6]:

i) The number of plasmons:

I1 =

Z 1

�1
juj2 dx (1.11)

ii) The number of particles:

I2 =

Z 1

�1
u3 dx (1.12)

iii) The energy of the oscillations:

I3 =

Z 1

�1

�
3 juxj2 + u3 juj2 +

1

3
u33 �

1

2
(u3x)

2

�
dx (1.13)
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Proof:

i) The number of plasmons:

To prove (1.11), we multiply equation (1.8) and (1.9) by u1 and u2,

respectively, then by adding the resulting equations to get

�
@

@t

�
u21 + u22

�
+
3

2

@

@x
(u1u2x � u2u1x) = 0

Integrate both sides of the previous equation with respect to x, to get

�
@

@t

Z 1

�1

�
u21 + u22

�
dx+

3

2
[u1u2x � u2u1x]

1
�1 = 0 (1.14)

Assuming vanishing boundary conditions, the last term of equation (1.14) is

zero, so,

�
@

@t

Z 1

�1

�
u21 + u22

�
dx = 0

and hence the �rst conserved quantity (1.11) is obtained. The value of I1; using

the exact solution is

I1 =

Z 1

�1
juj2 dx = 72

25

p
10�3

ii) The number of particles:

To prove the second conserved quantity (1.12), we integrate both sides

of equation (1.10) with respect to x, this will gives usZ 1

�1
(u3)t dx+

1

2

Z 1

�1
(u3)xxx dx +

1

2

Z 1

�1

�
u21 + u22 + u23

�
x
dx=0

@

@t

Z 1

�1
u3dx+

1

2

�
(u3)xx +

�
u21 + u22 + u23

�
x

�1
�1=0 , (1.15)

The second term in (1.15) will vanish due to the vanishing boundary conditions

and this will lead us to
@

@t

Z 1

�1
u3dx = 0 ,
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and hence Z 1

�1
u3dx = constant

Using the exact solution we can easily �nd the exact value of I2

I2 =

Z 1

�1
u3dx = �

18

5

p
10�

iii) The energy of the oscillations:

To prove (1.13), we multiply equation (1.8) and (1.9) by 2u1u3 and

2u2u3, respectively, then we get

2�u1u3 (u1)t + 3u1u3 (u2)xx � u1u2u
2
3 = 0 , (1.16)

2�u2u3 (u2)t � 3u2u3 (u1)xx + u2u1u
2
3 = 0 , (1.17)

after that, we di¤erentiate equation (1.8), (1.9) and (1.10) with respect to x, then

multiply result by 6u1x, 6u2x and u3x, respectively, then we get

6�u1x (u1)tx + 9u1x (u2)xxx � 3u1x (u2xu3 + u2u3x) = 0 , (1.18)

6�u2x (u2)tx � 9u2x (u1)xxx + 3u2x (u1xu3 + u1u3x) = 0 , (1.19)

u3x (u3)tx+
1

2
u3x (u3)xxxx+

1

2
u3x
�
u21 + u22 + u23

�
xx

= 0 , (1.20)

after that, we multiply equation (1.10) by u21, u
2
2 and by u

2
3

u21 (u3)t+
1

2
u21 (u3)xxx+

1

2
u21
�
u21 + u22 + u23

�
x
= 0 , (1.21)

u22 (u3)t+
1

2
u22 (u3)xxx+

1

2
u22
�
u21 + u22 + u23

�
x
= 0 , (1.22)

u23 (u3)t+
1

2
u23 (u3)xxx+

1

2
u23
�
u21 + u22 + u23

�
x
= 0 . (1.23)

Finally, adding equations (1.16) - (1.23), so that the resulting equation can
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be rewritten as:

@

@t

�
3 juxj2 + u3 juj2 +

1

3
u33 �

1

2
(u3x)

2

�
+

@

@x
[u3 (u1u2x � u1xu2)

+ (u1xu2xx � u1xxu2x) +
�
u21 + u22 + u23

�2
+

�
u3xu3xxx �

1

2
u23xx

�
+(u3x

�
u21 + u22 + u23

�
� u3xx

�
u21 + u22 + u23

�
)] = 0 . (1.24)

We integrate both sides of equation (1.24) with respect to x, to get
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�
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1

3
u33 �

1

2
(u3x)

2

�
dx+ [u3 (u1u2x � u1xu2)

+ (u1xu2xx � u1xxu2x) +
�
u21 + u22 + u23

�2
+

�
u3xu3xxx �

1

2
u23xx

�
+
�
u3x
�
u21 + u22 + u23

�
� u3xx

�
u21 + u22 + u23

��
]1�1 = 0 (1.25)

where

[u3 (u1u2x � u1xu2) + (u1xu2xx � u1xxu2x) +
�
u21 + u22 + u23

�2
+

�
u3xu3xxx �

1

2
u23xx

�
+
�
u3x
�
u21 + u22 + u23

�
� u3xx

�
u21 + u22 + u23

��
]1�1 �! 0

by using the boundary conditions, then equation (1.25) becomes:

@

@t

Z 1

�1

�
3 juxj2 + u3 juj2 +

1

3
u33 �

1

2
(u3x)

2

�
dx = 0

and this gives
R1
�1
�
3 juxj2 + u3 juj2 + 1

3
u33 � 1

2
(u3x)

2� =constant

1.4 Solution of Block Tridiagonal System

In our numerical calculations, we need the solution of block tridiagonal sys-

tem. Crout�s method is used to solve this system, and this method can be de-

scribed as follows [2],[5]:
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Consider the block tridiagonal system

Aixi�1 +Bixi + Cixi+1 = Fi , for i = 1; 2; :::; n

where

A1 = Cn = 0

We can write this system in a matrix vector form as:

Gx = F (1.26)26666666664

B1 C1 0 � � � � � � 0

A2 B2 C2
...

0
. . . . . .

...
...

. . . . . . . . . 0
... An�1 Bn�1 Cn�1
0 � � � � � � 0 An Bn

37777777775

2666666664

x1
x2
...
...

xn�1
xn

3777777775
=

2666666664

F1
F2
...
...

Fn�1
Fn

3777777775
here each Ai is an (mi �mi�1) matrix, each Bi is an (mi �mi) matrix and each

Ci is an (mi �mi+1)matrix for some collection of positive integersm1;m2; :::;mn.

and so xi and Fi are (m� 1) column subvectors and 0 denotes the (m�m) zero

matrix.

To solve the block tridiagonal system we factor the matrix G in equation

(1.26) as

G = LU (1.27)

where

L =

266666664

L1 0 � � � � � � 0

A2 L2
...

0
. . . . . .

...
... An�1 Ln�1 0

0 � � � 0 An Ln

377777775
,
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U =

266666664

I1 U1 0 � � � 0

0 I2 U2
...

...
. . . . . . 0

... In�1 Un�1
0 � � � � � � 0 In

377777775
where L and U are lower and upper block triangular matrices respectively, and

each Li is (mi �mi)matrix, each Ui is (mi �mi+1)matrix and each Ii is (mi �mi)

identity matrix.

Now multiply the right hand side of equation (1:27) and equate both sides of

equation (1:27). We can easily �nd the unknown elements fLigni=1 and fUig
n�1
i=1

in the following manner

L1 = B1 ,

U1 = B�1
1 C1 ,

Li = Bi � AiUi�1 ,

Ui = L�1i Ci

for i = 2; 3; :::::n� 1, and

Ln = Bn � AnUn�1

Now the system (1.26) can be written as

LUx = F . (1.28)

Now by assuming

Ux = y . (1.29)

Equation (1.28) will be reduced to

Ly = F . (1.30)


