Chapter 1

Coupled Nonlinear Shrodinger-KdV

Equations

1.1 Introduction

In this chapter we will study the coupled nonlinear Shrodinger-KdV equa-
tions (CSKdV) and the exact solution of them. So we will see that this equations
has conserved quantities. We will present the solution of the block tridiagonal
system, penta-diagonal system and block penta-diagonal system. Fixed point

method for solving the nonlinear system will be given.

Exact solutions for coupled nonlinear systems are discussed by many au-
thers [1],[10],[21],[22],[28]. Also the numerical solution for coupled nonlinear
Shrodinger-KdV are studied by many authers and very rich research subject [2]-
[5],[11],[12]-[19],][23],[24]. Finite element solution of the CSKdV are discussed by

[6],[7].
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1.2 Coupled Nonlinear Shrédinger-KdV Equa-
tions
Nonlinear phenomena play a crucial role in a variety of scientific fields, espe-

cially in fluid mechanics, solid state physics, plasma physics, plasma waves and

chemical physics. The coupled nonlinear Shrodinger-KdV equations [6],[7]

. 3 1
1€u; + §um — §uv = 0, (1.1)
1 1
v + §Ux$ac + 5 (|U|2 + U2)$ =0 ’ (12)

r, < <z, t>0
with the initial conditions
u(x,0) =wug (z) , v (x,0) = vg ()
and boundary conditions
u(z,t) =u(x,,t) =0, v(x,t) =v(x,.,t) =0 (1.3)

have been used extensively to model nonlinear dynamics of one-dimensional Lang-
muir and ion-acoustic waves in a system of coordinates moving at the ion-acoustic
speed. Here u (x,t) is a complex function describing electric field of Langmuir
oscillations and v (z,t) is real function describing low-frequency density pertur-
bation. ¢ > 0 is a constant [7]. The exact solution of coupled Shrodinger-KdV
equations (1.1) and (1.2) is

(o) — —g\/gatanhgexp{ia[(i—g>t—g]}, (1.4)

cosh & 20e 6 3
9 1
v(z,t) = _gacosh2§ (1.5)

where £ = /<5 (v + at), and « is a free positive parameter [6],[7].
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To avoid complex computation, we assume [12]-[19]

w(r,t) = wup(z,t) +iug(z,t), i?=—1, (1.6)

U(Ivt) = us (ZE,t) (17)
where uy (z,t) ,us (z,t) and us (x,t) are real functions.

By making use of (1.6) and (1.7), the CSKdV equations will be reduced to
the coupled system

3 1
€ (u1), + B} (u2),, — Qlalis = 0, (1.8)
3 1
€ (uz)y = 5 (W) + gurus = 0, (1.9)
1 1
(us), +5 (U3)p +5 (01 13+ 03), = 0. (1.10)

System (1.8) - (1.10) is nonlinear [10].

1.3 Conservation Laws

Theorem:

The coupled nonlinear Shrodinger-KdV equations (1.1) and (1.2) has

the conserved quantities[6]:

i) The number of plasmons:

Ilz/ ul? da (1.11)

ii) The number of particles:

[e 9]

iii) The energy of the oscillations:

& 1 1
I3 = / [3|ux|2—|—u3 |u|2—|——u3

S~ §(ugx)2 dx (1.13)
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Proof:
i) The number of plasmons:

To prove (1.11), we multiply equation (1.8) and (1.9) by u; and us,
respectively, then by adding the resulting equations to get

ui +u3) + = — (ugtay — ugttyy) =0

6§< 20x

Integrate both sides of the previous equation with respect to x, to get

o0

3
Ea (U% + Ug) dr + = [U1U,2x — Ugulx]iooo =0 (114)

2
Assuming vanishing boundary conditions, the last term of equation (1.14) is

Zero, SO,

a o0
ea/ (uf +u3) dz =0

—00

and hence the first conserved quantity (1.11) is obtained. The value of I;, using

the exact solution is

L = / ul? dz = %\/ 1003

ii) The number of particles:

To prove the second conserved quantity (1.12), we integrate both sides
of equation (1.10) with respect to x, this will gives us

[ ey [ e + 5 [ g ), oo

—00 —00 —00

O [ e () + (a3 4a3) )T =0, (115)

The second term in (1.15) will vanish due to the vanishing boundary conditions

a o
a/wu;z,dx:(),

and this will lead us to
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and hence

(0]
/ usdr = constant

o0

Using the exact solution we can easily find the exact value of Iy

0 18
I :/ ugdr = = 10«

[e.9]

iii) The energy of the oscillations:

To prove (1.13), we multiply equation (1.8) and (1.9) by 2uju3 and

2uqug, respectively, then we get

2euyug (uy), + urus (ug),, — urugui = 0,

26U2U3 (’LLQ)t — 3U2U3 (ul):m: + u2u1u§ =0 s

(1.16)
(1.17)

after that, we differentiate equation (1.8), (1.9) and (1.10) with respect to x, then

multiply result by 6uy,, 6us, and wus,, respectively, then we get

6eury (u1),, + iy (U2),,, — Sty (U2uz + ugus,) = 0,

Geugy (us2),, — oy (U1),,, + SUoy (U1pus + wqus,) = 0,
1

U3g (u?’)tm +5 Use (u3)xsv:1::r t5 Use (U% + ug + uﬁ)xz =0 ’

2 2

after that, we multiply equation (1.10) by u?, u3 and by u3

1 1
u% (u3>t —|——U€ (u3)m:r:p +—'LL% (u% + 'LL% + ug)m =0 ’

2 2
1 1
1 1

(1.18)
(1.19)
(1.20)

(1.21)
(1.22)

(1.23)

Finally, adding equations (1.16) - (1.23), so that the resulting equation can
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be rewritten as:

19) 1 1
a 3 ’Ux|2 + us |u|2 -+ gug — 5 <U3$>2:| + %[Ug (u1u2x — U11u2>

1
+ (leUer - ul:pm“Qw) + (u% + u% + Ug)Q + <u3zu3xmr - §u§xx)

+(uze (u% +ul + ug) — U3y (u% +ul + u%))] =0. (1.24)

We integrate both sides of equation (1.24) with respect to x, to get
a o

ot ) o

1 1 o [
|:3 |ux’2 + usg |u’2 + gug — 5 (ugx)2:| dr + % /_OO[U:J, (ulu% — UlgEUQ)

1
+ (ulzu2xm - ulxx“lr) + (u% + Ug + U§)2 + <u3xu3xmx - 5”%3096)

+ (use (uf +u3 +u3) = usee (uf + 3 +u3))lde =0 .

o [ 1 1
/ |:3 |Ua;|2 + us |U|2 + —u3 - <U3x)2:| dx + [U3 <U1U2$ — Ula;UQ)

ot ) . 3% 2
+ (U12U220 — UtzzlUog) + (U% +uj + U§)2 + (USxUSa:m: - %Ugm)
+ (use (uf + uj + uj) — usee (uF +u3 +13))]%, =0 (1.25)
where
[us (ugtioy — UrpU2) + (U1pUoze — Urpploz) + (U% + uj + uz%,)Q
= (u;:,gcugm — %ugm> + (uze (05 +ud +u3) — usee (05 +ud +u3))]= — 0

by using the boundary conditions, then equation (1.25) becomes:

o [ 1 1

— 00

and this gives [*[3 |u,|* + ug [u|* + 2ud — 1 (us,)?] =constant

1.4 Solution of Block Tridiagonal System

In our numerical calculations, we need the solution of block tridiagonal sys-
tem. Crout’s method is used to solve this system, and this method can be de-

scribed as follows [2],[5]:
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Consider the block tridiagonal system
Ail'ifl + BZCIZ',L + Cil'i+1 = FZ for i = 1, 2, ., n

where

We can write this system in a matrix vector form as:

Gx=F (1.26)
B, C; 0 0 71 x 7
Ay By (9 Xy 5,
0 . - .
0 :
: An1 Bay Cnq | | Xn1 Foa
| O 0 A, B, |L % F,

here each A; is an (m; X m;_1) matrix, each B; is an (m; X m;) matrix and each

C; is an (m; x m;,1) matrix for some collection of positive integers my, ma, ..

o My

and so x; and F; are (m x 1) column subvectors and 0 denotes the (m x m) zero

matrix.

To solve the block tridiagonal system we factor the matrix G in equation

(1.26) as
G=LU (1.27)
where
[ L, 0 0
A2 L2
— 0 °
Anfl Lnfl 0
0 0 A, L,
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L U, 0o - 0 |
o L, U,
U= : 0
. [nfl Unfl
] 0 -~ --- 0 I, |

where L and U are lower and upper block triangular matrices respectively, and
each L; is (m; x m;) matrix, each U; is (m; X m;1) matrix and each [; is (m; x m;)

identity matrix.

Now multiply the right hand side of equation (1.27) and equate both sides of
equation (1.27). We can easily find the unknown elements {L;}_, and {U;}7—,

in the following manner

Ll = Bl 3

U, = B{'Cy,

Li = Bi_AiUi—17
Ui - LflCi

)

Ln - Bn - AnUn—l
Now the system (1.26) can be written as

LUx=F. (1.28)

Now by assuming

Ux=y. (1.29)

Equation (1.28) will be reduced to

Ly =F. (1.30)



